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本日の内容

1. 重回帰モデル

2. OLS推定量の性質

3. 実証分析例
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重回帰
▶ 定数項以外に説明変数が複数ある回帰モデル
を重回帰モデル（multiple regression model）と
いう．

定数項以外に説明変数が k 個ある場合，

yi =β0 + β1xi1 + β2xi2 + · · ·
+ βk xik + ui,

E(ui | xi1, xi2, · · · , xik) =0,
E(uiu j | xi1, xi2, · · · , xik) =0 (i ̸= j),

V(ui | xi1, xi2, · · · , xik) =σ2,

i =1, 2, · · · , n.
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各観測値の式を並べると，

y1 = β0 + β1x11 + β2x12 + · · · + βk x1k + u1,

y2 = β0 + β1x21 + β2x22 + · · · + βk x2k + u2,
...

yn = β0 + β1xn1 + β2xn2 + · · · + βk xnk + un.

ベクトル・行列を用いて表示すると，


y1
y2
...
yn

 =


1 x11 x12 · · · x1k
1 x21 x22 · · · x2k
... ... ... . . . ...
1 xn1 xn2 · · · xnk



β0
β1
β2
...
βk


+


u1
u2
...

un

 .
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y =


y1
y2
...
yn

 , X =


1 x11 x12 · · · x1k
1 x21 x22 · · · x2k
... ... ... . . . ...
1 xn1 xn2 · · · xnk

 , β =


β0
β1
β2
...
βk


,

u =


u1
u2
...

un

 とすると，重回帰モデルは次のように簡潔
に表すことができる．

y = Xβ + u,

E(u | X) = 0,
V(u | X) = σ2In.
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モデルを
y = X β̂ + e,

と書き換え，
n∑

i=1
e2

i = e′e =
(
y − X β̂

)′ (
y − X β̂

)
,

が最小になるように OLS推定量を求めると，

β̂ = (X′X)−1X′y.

▶ e =


e1
e2
...

en

 .
（導出方法は付録参照）
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OLS推定における仮定（重回帰の場合）
▶ 「説明変数を所与とした誤差項の条件付き期待
値」と，「誤差項の条件なし期待値」が等しく，
その値はゼロ．

▶ E(u | X) = E(u) = 0.
⇒説明変数と誤差項は平均独立で，誤差項の
期待値はゼロ．

▶ 説明変数を所与として，誤差項の分散は一定
で，異なる個体の誤差項同士は無相関．

▶ V(u | X) =


σ2 0 · · · 0
0 σ2 · · · 0
...

... . . . ...
0 0 · · · σ2


= σ2In.

▶ 説明変数を所与として，誤差項は正規分布に
従う．

▶ u | X ∼ N
(
0, σ2In

)
.
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偏回帰係数
▶ 重回帰モデルの回帰係数を偏回帰係数（partial

regression coefficient）という．

▶ 重回帰モデル

yi = β0 + β1xi1 + β2xi2 + · · · + βk xik + ui,

の偏回帰係数 β j ( j = 1, 2, · · · , k)は，「仮に xi j
以外の変数の値を一定水準に固定したときに，
xi1, xi2, · · · , xikを所与とした yiの条件付き期待
値に xi jが与える影響」を測る．

▶ e.g.,仮に熟練度がすべての個人で一定だったとき
の，修学年数が年収の条件付き期待値に与える
影響．
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▶ 他の変数の値を一定水準に固定することを「他
の条件を一定とする（ceteris paribus）」と
いう．

▶ e.g.,「他の条件を一定としたうえで，修学年数が
1年長くなると年収が平均して〇円高くなる傾向
がある」などと表現．
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▶ yi の条件付き期待値をとった

E(yi | xi1, xi2, · · · , xik) = β0+β1xi1+β2xi2+· · ·+βk xik,

を xi j で偏微分（他の説明変数の値は一定）す
ると，β j になる．

∂E(yi | xi1, xi2, · · · , xik)
∂xi j

= β j .

▶ その他の変数の影響が一定であるという状況
を作り出すための説明変数をコントロール変
数（control variable）という．

▶ xi j が yi に与える影響に興味がある場合，xi j 以
外の説明変数はコントロール変数．
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古典的線形回帰モデル
▶ 説明変数を所与として，誤差項の分散が一定
で，異なる個体の誤差項同士が無相関な線形回
帰モデルを古典的線形回帰モデル（classical
linear regression model）という．

▶ 重回帰モデルの場合，

y = Xβ + u,

E(u | X) = 0,
V(u | X) = σ2In

であれば古典的線形回帰モデルとなる．
※ E(u | X) = 0の条件は，回帰モデルであるために
必要．
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OLS推定量の性質

▶ 古典的線形回帰モデルの偏回帰係数ベクトル
の OLS推定量 β̂の期待値は，

E(β̂) = β.

å古典的線形回帰モデルの（偏）回帰係数の
OLS推定量は不偏性をもつ不偏推定量である．
（証明は省略）
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▶ 被説明変数の 1次関数で表される推定量を線形
推定量（linear estimator）という．

▶ 単回帰モデル yi = β0 + β1xi + ui の場合，

β̂1 =
∑n

i=1 (xi − x̄) (yi − ȳ)∑n
i=1 (xi − x̄)2

=
∑n

i=1 (xi − x̄) yi∑n
i=1 (xi − x̄)2

.

（証明は省略）
▶ 重回帰モデル y = Xβ + uの場合，

β̂ = (X′X)−1X′y.

⇒どちらも被説明変数 yi または y の 1次関数
なので，線形推定量である．

▶ 不偏性をもつ線形推定量を線形不偏推定量
（linear unbiased estimator）という．
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⇓
古典的線形回帰モデルの（偏）回帰係数の OLS推
定量は線形不偏推定量である．
▶ 線形不偏推定量の中で分散が最小の推定量
を最良線形不偏推定量（Best Linear Unbiased
Estimator, BLUE）という．

▶ 有効性と不偏性をもつ線形推定量．

▶ ガウス＝マルコフ定理：
古典的線形回帰モデルの（偏）回帰係数の
OLS推定量は BLUEである．
（証明は省略）
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実証分析例：ミンサー方程式の推定
就業可能年数をコントロールしたうえで，「修学年
数が増えると，年収がどれだけ増えるのか」を分析
するためのモデル（ミンサー方程式）

ln incomei = β0 + β1yeduci + β2experi + β3exper2
i + ui

▶ incomei :年収（万円）
▶ yeduci :修学年数（年）
▶ experi :就業可能年数（年）
▶ i :個人番号

を推定する．
å「年収の対数値」を「修学年数」と「就業可能年
数」と「就業可能年数の 2乗」に回帰する．
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▶ 就業可能年数
▶ 最後の学校を卒業してからの年数

就業可能年数 = 年齢 −修学年数 − 6.

※ 小学校に入学する年齢が 6歳のため，6を引いて
いる．

▶ 熟練度を表す．
⇒賃金に影響を与える．

⇓
修学年数が年収に与える純粋な効果を計測す
るには，熟練度（を表す就業可能年数)をコン
トロールする必要がある．
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モデル推定結果
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出力結果の見方
▶ 係数: （偏）回帰係数推定値
▶ 標準誤差: （偏）回帰係数の標準誤差

▶ 次回の授業で説明

▶ t値:「（偏）回帰係数が 0」という帰無仮説の両
側 t検定における検定統計量の実現値（t値）

▶ 次回の授業で説明

▶ p値: 両側 p値
▶ 次回の授業で説明

▶ 回帰の標準誤差：誤差項の標準誤差

▶ R-squared: 決定係数

▶ Adjusted R-squared: 自由度修正済み決定係数
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誤差項の分散の推定
定数項以外に説明変数が k 個ある重回帰モデルの場
合，誤差項 ui の（条件付き）分散

V(ui | X) = σ2,

は，以下のように推定できる．
▶ 誤差項の分散の推定量：

s2 =
∑n

i=1 e2
i

n − k − 1
=

e′e

n − k − 1
.

この s2は不偏性をもつ，すなわち E(s2) = σ2

となることが知られている．（証明は省略）
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誤差項の標準偏差の推定

定数項以外に説明変数が k 個ある重回帰モデルの場
合，誤差項 ui の（条件付き）標準偏差 σの推定値
である標準誤差は，以下のように推定できる．
▶ 誤差項の標準偏差の推定量：

s =

√ ∑n
i=1 e2

i

n − k − 1
=
√

e′e

n − k − 1
.

この式の nと k と e1, e2, · · · , enに具体的な値を
代入すれば，誤差項の標準偏差の推定値（誤差
項の標準誤差）を計算できる．
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自由度修正済み決定係数
▶ 決定係数 R2は説明変数の数（推定するパラ
メータの数）を増やすと必ず上昇する．
å関係のない説明変数を追加しても R2は上昇
する．
åそれを回避するには，R2を修正する．

自由度修正済み決定係数（adjusted R-squared）は，

R̄2 = 1 −
(
1 − R2

)
· n − 1

n − k − 1
.

▶ R̄2はマイナスになることがある．
▶ 「重回帰の場合」や「単回帰と重回帰の結果を
比較する場合」は，自由度修正済み決定係数
R̄2を見るのが一般的．
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モデル推定結果
▶ 修学年数の係数

▶ 0.117547（符号は正）
▶ 年収と修学年数についてはログ＝レベル・モデル
の関係．
å就業可能年数（とその 2乗）を一定としたうえ
で，修学年数が 1年長くなると，年収が平均して
11.7547%高くなる傾向がある．

▶ 就業可能年数の係数
▶ 1乗の係数は 0.196174（符号は正）
▶ 2乗の係数は −0.00638115（符号は負）

これらの係数の解釈は，第 9回授業で説明
する．

▶ 定数項
▶ 2.4855（符号は正）
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▶ 誤差項の標準誤差
▶ 0.798267

▶ 自由度修正済み決定係数
▶ R̄2 = 0.206049.

å「年収」の動きの約 20.6%を「修学年数」と
「就業可能年数」と「就業可能年数の 2乗」の動き
で説明できている．
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今日のキーワード

重回帰モデル，偏回帰係数，他の条件を一定とす
る，コントロール変数，古典的線形回帰モデル，線
形推定量，線形不偏推定量，最良線形不偏推定量，
自由度修正済み決定係数
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次回までの準備

▶ 今回の講義スライドを読み直す．

▶ 「提出課題 4」に取り組む．

▶ 教科書第 6章第 4節～第 5節を読む．
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付録：重回帰モデルの OLS推定量の導
出
残差二乗和は，

n∑
i=1

e2
i = e′e = (y − X β̂)′(y − X β̂)

=
[
y′ − (X β̂)′

]
(y − X β̂)

= (y′ − β̂′X′)(y − X β̂)
= y′y − y′X β̂︸︷︷︸

1×1（スカラー）

− β̂′X′y︸︷︷︸
1×1（スカラー）

+β̂′X′Xβ

= y′y − y′X β̂ − (β̂′X′y)′ + β̂′X′Xβ

= y′y − y′X β̂ − y′(X′)′(β̂′)′ + β̂′X′Xβ

= y′y − y′X β̂ − y′X β̂ + β̂′X′Xβ

= y′y − 2y′X β̂ + β̂′X′Xβ.

26 / 25



この残差二乗和

n∑
i=1

e2
i = y′y − 2y′X β̂ + β̂′X′Xβ

が最小になるように OLS推定量を求める．
残差二乗和最小化問題は，

min
β̂∈R1+k

y′y − 2y′X β̂ + β̂′X′X β̂.

1階条件は，

d

d β̂
(y′y − 2y′X β̂ + β̂′X′X β̂) = 0.
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参考：内積の，ベクトルでの微分

a =


a1
a2
...

an

 , x =


x1
x2
...

xn

 ,
つまり，aと xをそれぞれ n × 1ベクトルとすると，

d
dx

a′x =


∂
∂x1

a′x
∂
∂x2

a′x
...

∂
∂xn

a′x


= a.
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（証明）

a′x = a1x1 + a2x2 + · · · + anxn,

なので，

d
dx

a′x =


∂
∂x1

a′x
∂
∂x2

a′x
...

∂
∂xn

a′x


=


∂
∂x1

(a1x1 + a2x2 + · · · + anxn)
∂
∂x2

(a1x1 + a2x2 + · · · + anxn)
...

∂
∂xn

(a1x1 + a2x2 + · · · + anxn)


=


a1
a2
...

an

 = a.　（証明終）
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参考：2次形式の，ベクトルでの微分

x =


x1
x2
...

xn

 , A =


a11 a12 · · · a1n
a12 a22 · · · a2n
... ... . . . ...

a1n a2n · · · ann

 ,
つまり，xを n × 1ベクトル，Aを n × n対称行列と
すると，

d
dx

x′Ax =


∂
∂x1

x′Ax
∂
∂x2

x′Ax
...

∂
∂xn

x′Ax


= 2Ax.

※ Aが対称でなければ，
d

dx
x′Ax = (A + A′)x.
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（証明【Aが対称の場合】）簡単化のため，

x =
[
x1
x2

]
, A =

[
a11 a12
a12 a22

]
,

とすると，

x′Ax =
[
x1 x2

] [a11 a12
a12 a22

] [
x1
x2

]
=
[
a11x1 + a12x2 a12x1 + a22x2

] [x1
x2

]
= (a11x1 + a12x2)x1 + (a12x1 + a22x2)x2

= a11x2
1 + a12x1x2 + a12x1x2 + a22x2

2

= a11x2
1 + 2a12x1x2 + a22x2

2,

なので，
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d
dx

x′Ax =

[
∂
∂x1

x′Ax
∂
∂x2

x′Ax

]
=

[
∂
∂x1

(a11x2
1 + 2a12x1x2 + a22x2

2)
∂
∂x2

(a11x2
1 + 2a12x1x2 + a22x2

2)

]
=
[
2a11x1 + 2a12x2
2a12x1 + 2a22x2

]
=
[
2(a11x1 + a12x2)
2(a12x1 + a22x2)

]
= 2

[
a11x1 + a12x2
a12x1 + a22x2

]
= 2

[
a11 a12
a12 a22

] [
x1
x2

]
= 2Ax.　（証明終）
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残差二乗和最小化問題の 1階条件は，

d

d β̂
(y′y − 2y′X β̂ + β̂′X′X β̂) = 0

⇔ d

d β̂
y′y︸ ︷︷ ︸

=0

+
d

d β̂
(−2y′X β̂) +

d

d β̂
β̂′X′X β̂ = 0

⇔− 2 · d

d β̂
y′X β̂ +

d

d β̂
β̂′X′X β̂ = 0.

33 / 25



▶ y′X β̂の中で，
▶ y′X（1 × (1 + k)ベクトル）が a′xの a′に相当
▶ β̂（(1 + k) × 1ベクトル）が a′xの xに相当

▶ β̂′X′X β̂の中で，
▶ β̂′（1 × (1 + k)ベクトル）が x′Axの x′に相当
▶ X′X（(1 + k) × (1 + k)対称行列）が x′Axの Aに
相当

▶ β̂（(1 + k) × 1ベクトル）が x′Axの xに相当

のように考えれば，
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− 2 · d

d β̂
y′X β̂ +

d

d β̂
β̂′X′X β̂ = 0

⇔− 2(y′X)′ + 2X′X β̂ = 0
⇔− 2X′(y′)′ + 2X′X β̂ = 0
⇔2X′X β̂ = 2X′y

⇔X′X β̂ = X′y

⇔ (X′X)−1X′X︸          ︷︷          ︸
=I1+k

β̂ = (X′X)−1X′y

⇔β̂ = (X′X)−1X′y.
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